
MATH 302 Partial Differential Equations Fall 2011

Linear algebra and the geometry of quadratic equations

Similarity transformations and orthogonal matrices

First, we need to recall some things from linear algebra. Two square matrices A
and B are similar if there is an invertible matrix S such that A = S−1BS. This is
equivalent to B = SAS−1. The expression SAS−1 is called a similarity transforma-
tion of the matrix A. A square matrix A is diagonalizable if it is similar to a diagonal
matrix D. That is, A is diagonalizable if there is a diagonal matrix D and an invert-
ible matrix S such that D = SAS−1.

Similarity transformations can be thought of in terms of a change of basis (see
Theorems CB, ICBM, and SCB of A First Course in Linear Algebra). Here, we’ll limit
our attention to the vector spaces Rn. If {~v1,~v2, . . . ,~vn} is a basis for Rn, then
{S~v1, S~v2, . . . , S~vn} is another basis for Rn. If ~v is in Rn and A is an (n× n) matrix,
then we can rewrite the product A~v as

A~v = (S−1BS)~v = S−1B(S~v).

We can read the last expression in the following way: Start with the vector~v, multi-
ply by S to change bases, then multiply by B, and finally multiply by S−1 to return
to the original basis. All of this is equivalent to multiplying by A in the original
basis. So what’s the point? If we choose S carefully, then multiplication by B is
easier than multiplication by A. In particular, if A is diagonalizable, we get to mul-
tiply by a diagonal matrix which is particularly easy. This will be very useful in
our application to quadratic equations below.

A similarity transformation is particularly nice if the matrix S is orthogonal. By
definition, a (real) square matrix S is orthogonal if STS = I where ST is the transpose
of S and I is the identity matrix (of the appropriate size). An orthogonal matrix
is invertible and S−1 = ST. It is a theorem (for example, see Theorem COMOS
of FCLA) that a matrix S = [~S1,~S2, . . . ,~Sn] is orthogonal if and only if the set of
column vectors {~S1,~S2, . . . ,~Sn} is an orthonormal set. Expressed in terms of inner
product, this means

〈
~Si,~Sj

〉
= 0 for i 6= j and

〈
~Si,~Si

〉
= 1.

For the vector spaces R2 and R3, we can think of vectors both algebraically and
geometrically as in multivariate calculus. For the most part, we’ll focus on R2 so
we can more easily draw pictures. The geometric interpretation of a vector is as a
directed line segment, that is, an arrow. For our purposes here, it will be enough
to focus on arrows with tail based at the origin of a chosen coordinate system.
If the head of the arrow is at the point P(x, y), we can make a correspondence

with the column vector
[

x
y

]
. Starting with the column vector

[
v1
v2

]
we can make

a correspondence with the arrow having tail at the origin and head at the point
P(v1, v2). When thinking geometrically, we will denote the standard basis vectors
by ı̂ and ̂ (with k̂ included when working in R3). We can then write

~v =

[
v1
v2

]
= v1

[
1
0

]
+ v2

[
0
1

]
= v1 ı̂ + v2 ̂.



So, when we are given a vector ~v in R2 or R3, we can think of it as either an
arrow vector or a column vector as suits our needs. Note a subtle point here: The
correspondence we make depends on having picked a coordinate system for the
geometric plane and a basis for the space of column vectors.
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Figure 1: Correspondence between arrows and column vectors

In the geometric view, we can think of the inner product of linear algebra as the
dot product from multivariate calculus. That is, with

~u =

u1
u2
u3

 = u1 ı̂ + u2 ̂ + u3k̂, and ~v =

v1
v2
v3

 = v1 ı̂ + v2 ̂ + v3k̂

we have 〈
~u,~v

〉
= u1v1 + u2v2 + u3v3 = ~u ·~v.

Recall that ‖v‖2 = ~v ·~v gives the square of the length of the (arrow) vector~v. Angles
enter through the result connecting algebra and geometry of dot products, namely

~u ·~v = ‖~u‖ ‖~v‖ cos θ

where θ is the angle between the (arrow) vectors ~u and ~v. A pair of vectors that
are orthogonal as column vectors (

〈
~u,~v

〉
= 0) are perpendicular as arrow vectors

(~u ·~v = 0).
Let’s look at the geometry of multiplying a vector by an orthogonal matrix.

We know that multiplication by an orthogonal matrix preserves the inner product
(Theorem OMPIP) and hence the norm. That is, if S is orthogonal, then〈

S~u, S~v
〉
=
〈
~u,~v

〉
(1)

for any pair of vectors ~u and ~v so

‖S~w‖ = ‖~w‖. (2)

for any vector ~w. To connect with a geometric interpretation in R2 and R3, we
will think of the inner product as the dot product (from multivariate calculus).



Geometrically, ~w and S~w have the same length for any vector ~w in R2 or R3. When
we are emphasizing geometric interpretations, we might write Display (1) in terms
of the dot product as

(S~u) · (S~v) = ~u ·~v (3)

Using the geometric interpretation of dot product, we have

‖S~u‖ ‖S~v‖ cos φ = ‖~u‖ ‖~v‖ cos θ

where φ is the angle between S~u and S~v while θ is the angle between ~u and ~v.
Using the facts that ‖S~u‖ = ‖~u‖ and ‖S~v‖ = ‖~v‖, we see that cos φ = cos θ so
φ = θ. So, multiplication by an orthogonal matrix preserves lengths of vectors and
angles between pairs of vectors. Note that the same holds true for the geometric
transformation of rotation through a specified angle.

Exercise 1. Show that a (2 × 2) matrix S is orthogonal if and only if there is an
angle θ such that

S =

[
cos θ − sin θ
sin θ cos θ

]
(4)

or

S =

[
cos θ sin θ
sin θ − cos θ

]
. (5)

Exercise 2. Convince yourself that multiplication by a matrix of the form in Dis-
play (4) rotates a vector through the angle θ. Start by looking at the standard basis
vectors ı̂ and ̂. You might also want to choose some specific angles θ with which
to experiment. Try θ = 0, θ = π/4, θ = π/2, and θ = π.

Exercise 3. Determine the geometric interpretation of multiplication by a matrix
of the form in Display (5). Start by looking at the standard basis vectors ı̂ and ̂.

Quadratic equations and curves

Somewhere along the line, you learned that an ellipse can be described by an equa-
tion of the form is

x2

r2
1
+

y2

r2
2
= 1. (6)

If r1 > r2, then the major axis and minor axis of the ellipse lie along the x-axis and
y-axis, respectively. The semi-major axis length is given by r1 and the semi-minor axis
length is given by r2. You should remind yourself of the connection between the
geometric definition of an ellipse and the analytic description given in Display (6).

Exercise 4. Here is a geometric definition of ellipse: Pick two points F1 and F2 and a
distance d greater than |F1F2|. An ellipse with foci F1 and F2 is the set of all points P
such that |PF1|+ |PF2| = d. Show the connection between this geometric definition
and the analytic description given in Display (6). To do this, choose a coordinate
system with origin at the midpoint of the segment F1F2 and x-axis containing F1
and F2. Show P is on the ellipse if and only if the coordinates (x, y) of P satisfy
Display (6).



You should also know that every quadratic equation in two variables corre-
sponds to an ellipse, a hyperbola, or a parabola. Rather than look at all quadratic
equations in two variables, we’ll limit our attention to quadratic equations of the
form

Ax2 + 2Bxy + Cy2 = 1. (7)

(The factor of 2 in the cross term is for convenience.) Given an equation of this
form, we want to know whether the equation corresponds to an ellipse, a hyper-
bola, or a parabola. We’ll make nice use of some linear algebra to do this.

Start by defining

~x =

[
x
y

]
and Q =

[
A B
B C

]
.

You should check that
~xTQ~x = Ax2 + 2Bxy + Cy2.

Note that Q is a real symmetric matrix so the eigenvalues of Q are real and the
corresponding eigenvectors are orthogonal. (See Theorem HMRE and Theorem
HMOE of FCLA. Note that a real symmetric matrix is Hermitian.) . Let α1 and α2
denote the eigenvalues of Q and let ~u1 and ~u2 denote corresponding eigenvectors.
Choose ~u1 and ~u2 to be unit vectors.

Define the matrix S = [~u1,~u2] and note that S is an orthogonal matrix since
{~u1,~u2} is an orthonormal set (Theorem COMOS of FCLA). We can also choose ~u2
so that S has the form given in Display (4). We can use S to diagonalize the matrix
Q by a similarity transformation. That is,

SQST = D =

[
α1 0
0 α2

]
. (8)

Rewrite the similarity transformation in Display (8) to get Q = STDS. Using
this, we have

~xTQ~x = ~xTSTDS~x = (S~x)TD(S~x) = ~XTD~X

where we have defined ~X = S~x to get the last expression. Introducing components
of ~X as

~X =

[
X
Y

]
,

we can write

~X TD~X =
[
X Y

] [α1 0
0 α2

] [
X
Y

]
= α1X2 + α2Y2.

Thus, our original equation

Ax2 + 2Bxy + Cy2 = 1

is equivalent to the new equation

α1X2 + α2Y2 = 1. (9)

To see the utility of rewriting our original equation in this new form, let’s look
at the geometric relation between ~x and ~X = S~x. Recall that S is orthogonal and



of the form given in Display (4). The geometric effect of multiplication by S is
rotation through the angle θ. That is, if we consider ~x as a geometric vector (i.e.,
a directed line segment of specific length and direction), then S~x is the geometric
vector obtained by rotating ~x as shown in Figure 2.
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Figure 2: Multiplication by an
orthogonal matrix
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Figure 3: Rotation of coordinate axes

If we think of ~x as a position vector for a point with coordinates (x, y) in our
original coordinate system, then ~X is a position vector for the point with coordi-
nates (X, Y) with respect to a new coordinate system, one that has the same origin
but with coordinate axes rotated by the angle θ with respect to the x− and y−axes
as shown in Figure 3. The new coordinate basis vectors Î and Ĵ are rotations of ı̂
and ̂. Note that since we built the rotation (i.e., orthogonal) matrix S using eigen-
vectors~u1 and~u2 of the symmetric matrix Q, we have that Î = Sı̂ is the first column
of S so Î = ~u1 and Ĵ = S ̂ is the second column of S so Ĵ = ~u2. In other words, the
X-axis and Y-axis lie along the eigenspaces of the symmetric matrix Q.

The equations in Display (7) and Display (9) describe the same curve in differ-
ent coordinate systems. We can easily read off geometric information from Display
(9). Recall that α1 and α2 are the eigenvalues of the matrix

Q =

[
A B
B C

]
.

The characteristic polynomial of Q is

λ2 − (A + C)λ + (AC− B2) = (λ− α1)(λ− α2) = λ2 − (α1 + α2)λ + α1α2.

By comparing the first and last expressions, we see that AC − B2 = α1α2. (Note
that AC− B2 = det Q so this says that the determinant of Q is equal to the product
of the eigenvalues. This statement is true for any square matrix.) We now consider
cases.

1. det Q = AC− B2 > 0: In this case, the eigenvalues α1 and α2 are both nonzero
and have the same sign. If both are negative, then Display (9) has no solu-
tions. If both are positive, then Display (9) is the equation of an ellipse with
major and minor axes along the X-axis and Y-axis.

2. det Q = AC− B2 < 0: In this case, the eigenvalues α1 and α2 are both nonzero
and have opposite signs. Display (9) is the equation of a hyperbola with
symmetry axes along the X-axis and Y-axis.



3. det Q = AC − B2 = 0: In this case, either α1 = 0 or α2 = 0. For α1 = 0,
Display (9) reduces to α2Y2 = 1 so Y = ±1/

√
|α2|. You can think about this

pair of lines as a “degenerate” hyperbola.

Example 1
Let’s determine the geometry of the curve given by

73x2 − 72xy + 52y2 = 100.

We first divide both sides by 100 to get the standard form

73
100 x2 − 72

100 xy + 52
100 y2 = 1

of Display (7). From this, we read off

Q =

[ 73
100 −

36
100

− 36
100

52
100

]
=

1
100

[
73 −36
−36 52

]
.

Using technology, we find the eigenvalues and eigenvectors of Q are

α1 = 1 with ~u1 =

[
3
5
4
5

]

and

α2 =
1
4

with ~u2 =

[
4
5

−3
5

]
.

Since the eigenvalues are both positive, we have an ellipse. The major axis is in
the direction ~u2 and the semi-major axis length is 1/

√
1/4 = 2. The minor axis

is in the direction ~u1 and the semi-minor axis length is 1/
√

1 = 1. Note that the
symmetry axes are perpendicular as we expect. The ellipse is shown in Figure 4.
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Figure 4: The ellipse of Example 1


